A Polynomial Algorithm for Linear Feasibility Problems given by Separation Oracles

نویسنده

  • SERGEI CHUBANOV
چکیده

The algorithm proposed in this paper runs in a polynomial oracle time, i.e., in a number of arithmetic operations and calls to the separation oracle bounded by a polynomial in the number of variables and in the maximum binary size of an entry of the coefficient matrix. This algorithm is much simpler than traditional polynomial algorithms such as the ellipsoid method and the volumetric barrier method. In particular, we do not need the notion of volume to prove the polynomial complexity of our algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved infeasible-interior-point algorithm for linear complementarity problems

We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...

متن کامل

CSC 2411 - Linear Programming and Combinatorial Optimization ∗ Lecture 9 : Ellipsoid Algorithm ( Contd

The ellipsoid algorithm tells us that given these oracles to a problem, guarantees of not too large of an initial search space, and not too small of a possible volume for P = 0, we get a polynomial solution. With this observation, we may hope to achieve polynomial algorithms to certain LP with many more constraints than the natural parameters of the problem. Specifically, if m, the number of co...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization

  We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...

متن کامل

Efficient edge-skeleton computation for polytopes defined by oracles

In general dimension, there is no known total polynomial algorithm for either convex hull or vertex enumeration, i.e. an algorithm whose complexity depends polynomially on the input and output sizes. It is thus important to identify problems (and polytope representations) for which total polynomial-time algorithms can be obtained. We offer the first total polynomial-time algorithm for computing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017